Sonographic Screening Examination of the Fetal Heart

Lami Yeo, MD
Director of Fetal Cardiology
Perinatology Research Branch of NICHD / NIH / DHHS
Bethesda, MD and Detroit, Michigan, USA
Professor, Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Wayne State University School of Medicine
Detroit, Michigan, USA

Chief
Perinatology Research Branch of NICHD / NIH / DHHS
Bethesda, MD and Detroit, Michigan, USA

Disclosures

Lami Yeo, MD
No Relevant Financial Relationships

Learning Objectives

• After completing this presentation, the learner will be able to:
 1. Learn why it is important to perform a sonographic screening examination of the fetal heart
 2. Establish fetal situs, cardiac axis, and position
 3. Recognize normal fetal cardiac structures on ultrasound
 4. Determine which fetal cardiac views should be obtained during a sonographic screening exam

Introduction

Why is it important to learn how to perform a sonographic screening examination of the fetal heart?

Outline

Sonographic screening examination of the fetal heart
I. Introduction
II. Congenital heart disease
III. General considerations
IV. Fetal cardiac examination
 A. Four-chamber view
 1. Establishing situs
 2. Establish cardiac axis and position
 B. Normal cardiac structures
 C. Outflow tracts
 1. Aorta
 2. Pulmonary artery
 3. Short axis view of great vessels
 D. Three-vessel and three vessels and trachea views
 E. Color flow Doppler

Learning Objectives

• After completing this presentation, the learner will be able to:
 1. Learn why it is important to perform a sonographic screening examination of the fetal heart
 2. Establish fetal situs, cardiac axis, and position
 3. Recognize normal fetal cardiac structures on ultrasound
 4. Determine which fetal cardiac views should be obtained during a sonographic screening exam

Introduction

Why is it important to learn how to perform a sonographic screening examination of the fetal heart?

Outline

Sonographic screening examination of the fetal heart
I. Introduction
II. Congenital heart disease
III. General considerations
IV. Fetal cardiac examination
 A. Four-chamber view
 1. Establishing situs
 2. Establish cardiac axis and position
 B. Normal cardiac structures
 C. Outflow tracts
 1. Aorta
 2. Pulmonary artery
 3. Short axis view of great vessels
 D. Three-vessel and three vessels and trachea views
 E. Color flow Doppler
Introduction

- Suspected congenital heart defects will require a more comprehensive evaluation using fetal echocardiography

Yeo and Romero

Congenital Heart Disease

- Incidence: 4 – 13 per 1000 live births

- Leading cause of infant mortality
- Between 1950 – 1994, 42% of infant deaths reported to the World Health Organization (WHO) were attributable to cardiac defects

Cuneo BF et al. J Perinatol 2004; 24:674-678

Yeo and Romero

Congenital Heart Disease

- Structural cardiac anomalies are among the most frequently missed abnormalities during prenatal sonography
- Important cause of medico-legal liability
- High proportion of cases of congenital heart disease detectable prenatally occurs in patients without risk factors or extracardiac anomalies (thus, the importance of fetal cardiac screening)

Yeo and Romero

Congenital Heart Disease

- Prenatal detection of congenital heart disease may improve the outcome of fetuses with specific types of cardiac lesions:
 - Transposition of great vessels
 - Hypoplastic left heart syndrome
 - Coarctation of aorta

Tworetzky W et al. Circulation 2001; 103:1269-1273
Franklin O et al. Heart 2002; 87:67-69

Yeo and Romero

Important Reasons to Identify Congenital Heart Defects In-Utero

- Prenatal counseling
- Invasive testing to detect aneuploidy
- Pregnancy options
- Delivery at an appropriate facility
- Optimal obstetrical and neonatal care

Yeo and Romero

General Considerations

Yeo and Romero
General Considerations

- Ultrasound examination optimally performed at 18 – 22 gestational weeks
- Some cardiac lesions are detected later in gestation (e.g. coarctation of aorta)
- Use the highest possible transducer frequency
- Use the cine-loop feature (e.g. confirm movement of valve leaflets)

- High frame rate
- Increased contrast
- Single acoustic focal zone
- Relatively narrow image field
- Magnify the image

Fetal Cardiac Examination

- There are 4 normal cardiac chambers (right and left atrium, right and left ventricle)

Four-Chamber View

- Establish fetal position (vertex, breech, transverse)
- Identify the fetal right and left sides
- Identify that both fetal stomach and heart are on the left side of the fetus
Establishing Situs

Types of Situs

- Situs solitus (normal)
 - Liver on right
 - Stomach, apex of heart, aortic arch on left
- Situs inversus ("mirror image")
 - Liver on left
 - Stomach on right
- In either situs solitus or inversus, the cardiac apex may point to the left (levocardia), or point to the right (dextrocardia)

Situs Ambiguous

- Neither situs solitus or inversus (indeterminate situs)
- Also known as cardiosplenic syndromes, or heterotaxy
- Two most common forms are:
 - Polysplenia or asplenia syndromes
- Some organs are on the correct side, while others are on the opposite of the expected side

Establish Cardiac Axis and Position

- Normal orientation is called levocardia
- Heart size occupies one-third of the chest area
- Cardiac apex points to the left, and the majority of the heart occupies the left side of chest

Normal Heart Size
Establish Cardiac Axis and Position

- Angle of fetal heart relative to the midline should be 45 ± 20 degrees
- Left atrium is closest to the fetal spine
- Right ventricle is closest to the anterior chest wall

Normal Cardiac Axis and Position

- Heart located in right side of chest, apex points to the right
- Heart located in midchest, apex points to the midline
- Pathologic displacement of heart into right thorax, apex points to the left
- Extracardiac malformations (e.g. diaphragmatic hernia)

Cardiac Malposition

- Abnormal cardiac axis
 - Often associated with intrinsic complex cardiac defects and dysrythmias
- Abnormal cardiac position or displacement of heart
 - Due to extracardiac defect

Dextroposition

- Pleural effusion
- Lung
- Heart

Yeo and Romero
Normal Cardiac Structures

Moderator band
Ventricular septum
Atrial septum
Pulmonary veins

Four-Chamber Apical View

Moderator band in RV
Mitrail valve
Tricuspid valve

Apex of heart points directly towards / away from the transducer

Four-Chamber Apical View

Moderator band in RV
TV
MV
RA

Foramen ovale flap
Descending aorta

Apex of heart points directly towards / away from the transducer

Four-Chamber Apical View

Left atrium
Right ventricle

Apex of heart points directly towards / away from the transducer

Four-Chamber Apical View

Cardiac Atria

- Two atria similar in size
- Left atrium
 - Foramen ovale flap
 - Irregular posterior borders due to pulmonary veins
- Right atrium
 - Smooth borders
 - SVC and IVC enter this chamber
Atrial Septum

- Foramen ovale flap in left atrium

Foramen Ovale

- Umbilical venous blood entering the inferior vena cava preferentially streams towards the left side of the heart, through the foramen ovale
- Left atrial blood enters left ventricle, and then the ascending aorta
 - Most of this blood supplies the head and upper extremities of the fetus (via vessels from aortic arch)
 - Rest of the blood continues down the descending aorta

Cardiac Ventricles

- Two ventricles are approximately equal in size
 - In late pregnancy, the right ventricle is slightly larger than the left ventricle
- Right ventricle
 - Coarse trabeculation
 - Moderator band at apex (looks "shorter" than left ventricle)
- Left ventricle
 - Smooth contours
 - Conical shape
 - Forms the apex of the heart

Interventricular Septum

- Thickest at apex
- Narrows to become thinnest at level of atrioventricular valves

Interventricular Septum

- Should be intact from the apex of the heart to the crux
- Muscular septum (mostly)
- Membranous septum (thin, near atrioventricular valves)

Atrioventricular Valves

- Two distinct valves (versus one common valve)
- Mitral, tricuspid valves
 - Always follow the respective ventricles
 - Both valves open separately and move freely
 - Two sets of "clapping hands"
 - Both valves should be the same size

Atrioventricular Valves

- Mitral, tricuspid valves
 - Septal leaflet of tricuspid valve inserts on ventricular septum closer to the cardiac apex (more typically) than the mitral valve
 - Valves should never be at the same level
 - "Sea-gull wing" appearance (valves are normally off-set)
 - Mitral valve has attachments to the lateral wall left ventricle
 - Mitral valve has 2 leaflets, and tricuspid valve has 3 leaflets
Outflow Tracts: Aorta and Pulmonary Artery

Yeo and Romero

Why is Evaluation of Outflow Tract Views Important?

- Some cardiac defects (e.g., transposition of great arteries) may not be evident from the four-chamber view alone (e.g., transposition of great vessels).
- Complementing the four-chamber view with the outflow tract views in cardiac screening is important to improve the prenatal detection of congenital heart disease.

Yeo and Romero

Outflow Tract Views

- Integral part of fetal cardiac screening
- Great vessels are approximately equal in size and cross each other at right angles from their origins as they exit from the ventricles

Yeo and Romero
Aorta arises from the left ventricle

http://commons.wikimedia.org/wiki/File:Heart_left_ventricular_outflow_track.jpg
http://commons.wikimedia.org/wiki/File:Heart_inferior_lv_wall_dysfunction.jpg

Long Axis View of Aorta

- Aorta is identified by head vessels arising from the aortic arch
- Continuity of anterior wall aorta with ventricular septum
- Continuity of posterior wall aorta with mitral valve
- Aortic valve should move freely and is not thickened

Head Vessels Arising from Aortic Arch

- Innominate
- Left common carotid
- Left subclavian artery

Long Axis View of Aorta

Long Axis View of Pulmonary Artery

- Pulmonary artery arises from right ventricle
- Pulmonary artery should cross the aorta, and is anterior to the aorta
- Pulmonic valve should move freely and is not thickened
- Can measure the pulmonary annulus
 - Slightly larger than the aortic root in fetal life
Long Axis View of Pulmonary Artery

- Aorta appears as a circular structure, with pulmonary artery coursing over it
- Pulmonary artery bifurcates
 - Ductus arteriosus and right pulmonary artery
- Can visualize aortic, pulmonary, tricuspid valves
- Can compare aortic and pulmonary annulus

Short Axis View of Great Vessels

- Visualization of these views is desirable and should be attempted as part of the routine fetal cardiac screening examination
- Both planes define three vascular structures, and their relationships with each other and with the trachea

Three-vessel view (3VV) and Three vessels and trachea view (3VT)
Three-Vessel View (3VV)

- From left to right, the vessels are:
 - Pulmonary artery, aorta, SVC
- Assessment of vessel number, size, alignment, and arrangement can be made
- Pulmonary artery is most anterior vessel; SVC is most posterior
- Relative diameters decrease from left to right (pulmonary artery larger than aorta, and aorta larger than SVC)

Three Vessels and Trachea View (3VT)

- More cephalad image
- Transverse aortic arch is better visualized, and its relationship with the trachea is emphasized
- Both ductal and aortic arches are positioned to left of trachea and form a “V” shape as they both join the descending aorta
- 3VT view allows detection of coarctation of aorta, right aortic arch, etc.

Color Flow Doppler
Color Flow Doppler

- Although this is not mandatory, becoming familiar with its use and adding this to routine screening is encouraged.
- Facilitates imaging of cardiac structures and abnormal blood flow patterns.
- Plays an important role in diagnosing congenital heart defects.

Optimal color Doppler settings include:
- Narrow region of interest
- Appropriate pulse repetition frequency
- Low color persistence
- Adequate gain settings to display flow across valves and vessels.

Color flow through atrioventricular valves (red color) and aorta (blue color).

Summary of Identification of Fetal Cardiac Structures.
• Right Atrium
 – SVC and IVC enter this chamber
 – Walls are smooth
• Left Atrium
 – Foramen ovale flap
 – Pulmonary veins drain into this chamber
 – Irregular posterior borders

• Right Ventricle
 – Moderator band
 – Trabeculated lining
 – Always associated with respective tricuspid valve
• Left Ventricle
 – Conical shape, apex-forming
 – Smooth lining
 – Always associated with respective mitral valve

• Interventricular Septum
 – Mostly muscular
 – Thin, membranous portion near atrioventricular valves

• Tricuspid Valve
 – Three leaflets (anterior, posterior, septal)
 – Septal leaflet attachments
 – Has a more apical insertion on ventricular septum (vs. mitral valve)
• Mitral Valve
 – Two leaflets (anterior, posterior)
 – Attachments to lateral wall left ventricle

• Pulmonary Artery
 – Must bifurcate
• Aorta
 – Must have head vessels

Conclusions
Conclusions

• There are many important reasons to identify cardiac defects *in-utero*
• When imaging the fetal heart on ultrasound, recommend optimizing the image size and quality
• An abnormal cardiac axis and/or position may be associated with cardiac or extracardiac defects

Conclusions

• It is important to establish situs (*situs solitus* is normal)
• Examination of the four-chamber view of the heart is more than just counting four cardiac chambers
• The foramen ovale flap is located in the *left atrium*

Conclusions

• The right ventricle is identified by the moderator band
• Mitral and tricuspid valves always follow their respective ventricles (even if there are cardiac anomalies)
• Mitral and tricuspid valves should never be at the same level, and are *normally off-set*
 – Tricuspid valve has a more apical insertion on ventricular septum than the mitral valve

Conclusions

• Evaluation of the outflow tracts is important because:
 – It can increase detection rates for major cardiac defects
 – Some cardiac abnormalities may not be evident from scanning the four-chamber view alone

Key References

AIUM Practice Parameter for the Performance of Obstetric Ultrasound Examinations; 2013 and renamed 2015

Thank You