Sonography of the Normal Female Pelvis

Rochelle F. Andreotti MD, FAIR, FACR, FSFU
Professor of Clinical Radiology and Clinical Obstetrics and Gynecology
Vanderbilt University Medical Center

Disclosures
Rochelle F. Andreotti M.D.

Relevant Financial Relationships: Speaker for Philips Healthcare user course

Learning Objectives
After completing this presentation, the learner will:

Objective 1: recognize the normal sonographic appearance of the non-gravid female genital tract.

Objective 2: recognize the sonographic appearance of the female pelvis with respect to the menstrual cycle.

Objective 3: become aware of newer sonographic techniques and other modalities for imaging the female pelvis.

Introduction
Pelvic sonography is the imaging modality of choice for evaluating the female pelvis.

The following is a review of pelvic sonographic anatomy which forms the framework to be used to evaluate the abnormal pelvis.

Lecture Outline

• Sonographic technique
• Normal pelvic anatomy
• Pelvic hormonal changes during the menstrual cycle and with menopause
• Other sonographic techniques and modalities used to image the female pelvis

Technique
A Complementary Approach

• The standard pelvic examination
 • composed of the traditional transabdominal approach (TAS)
 • combined with transvaginal sonography (TVS)
 • frequently using color or power Doppler sonography to enhance diagnostic capabilities
Transabdominal Sonography

- Uses a distended bladder as a window to pelvic structures for a global view
- Visualization limited by attenuation from the body wall and the distance from the area of interest of the transducer
- Unable to use higher frequency transducers and benefit from their inherent higher axial and lateral resolution

Classic Technique Transabdominal Sonography

- Sagittal and transverse views of the pelvis

Limited Technique Transabdominal

- Used to complement TVS
- Initial evaluation without dedicated bladder filling
- For global view of pelvis

Transvaginal Sonography (TVS)

- Gives a more detailed evaluation of pelvic architecture using higher frequency transducers (>5 MHZ) at closer proximity to pelvic structures
- Field of view is limited
Technique Contraindications

- Premenarchal patients
- The majority of virginal patients
- Any patient who does not willingly consent to vaginal examination

Transvaginal Sonography

Sagittal view

- Uterine axis rotated 90 degrees counterclockwise from the TAS image on the sagittal view

Transverse Uterine View (coronal view of pelvis)

- Uterine orientation on transverse view (coronal view of the pelvis) is usually the same as TAS image

The Normal Sonographic Appearance of the Non-Gravid Genital Tract

Pelvis

- Bladder
- Ovaries
- Vagina
- Sigmoid & rectum
- Broad ligament
Pelvic Floor

- Sagittal midline
- Transperineal coronal view

Pelvic Vasculature

- Uterine and ovarian artery
- Uterine artery branches

Pelvic Vasculature

- Arcuate and Radial Arteries

Uterus

- Consists of:
 - Cervix - the lower cylindrical portion which projects into the vagina
 - Body or corpus
 - Isthmus - narrow area connecting the body and cervix
Cervix

Nabothian cysts
- Result of occlusion of endocervical glands
- Have no clinical significance

Uterus

- Uterine size and consistency
- Position
- Endometrium

Uterine size

- Measurement may be performed by TAS or TVS in sagittal, transverse and anterior-posterior dimensions
- Uterine length is often measured more accurately by TAS since the cervix may not be completely included on the transvaginal image
Uterine consistency

Myometrium best evaluated by TVS for improved resolution of architecture

Uterine Consistency

- The myometrium is divided into an echogenic outer layer (o) and intermediate layer (m), and hypoechoic inner layer (i)

Uterine Consistency Coronal view

- The inner layer appears as a thin hypoechoic halo surrounding the endometrium
- Best seen on coronal view

Uterine Measurements

- Normal measurements in menstruating females – vary with parity
 - 6-10.5 cm Length
 - 3-6 cm Transverse diameter
 - 2-5 cm A-P diameter

Uterine Measurements

- Normal measurements in postmenopausal females
 - 3.5-7.5 cm Length
 - 2-4 cm Transverse diameter
 - 1.7-3.3 AP diameter

- Ave volume approximately 1 cc up to age 9
- Larger cervix compared to corpus
Uterine Measurements

Premenopausal

7.1 cm L x 4.3 cm AP x 1.5 cm TRV

Postmenopausal

4.8 cm L x 4.3 cm AP x 2.5 cm TRV

Uterine Position

Variable changing with degree of bladder and rectal distention

• Flexion - axis of uterine body relative to cervix
• Version - axis of cervix relative to the vagina

Uterine Position

• Anteversion/anteflexion - most common position

Uterine Position

• Retroversion/retroflexion

Uterine Position

• Retroverted/retroflexed uterus image orientation

Uterine Position

• Neutral position
• Demonstrates coronal rather than transverse view of uterus
Endometrium

- Endometrial cavity seen as a thin echogenic line, a specular reflection of opposing endometrial interfaces
- Composed of superficial functional layer that sheds with menses and deep basal layer

Premenopausal Endometrial Thickness

- Should not exceed 14-16 mm

Premenopausal Endometrium

- Secretory
- Proliferative

Postmenopausal Endometrium

- Commonly atrophic with thickness measuring less than 4-5 mm (3.4 mm mean)
- Vaginal bleeding is often secondary to atrophy
- PMB and < or = 4 mm thickness - 1/917 chance of endometrial cancer

Premenopausal Endometrium

Menstrual

Consists of an echogenic line

The Asymptomatic Thickened Postmenopausal Endometrium

- Significance of thickening debatable
- No prospective studies performed to determine significant thickness
- Texture most important-polyp? fibroid?
- Routine biopsy not recommended

Ovary

- The ovaries are ellipsoid and can be identified in menstruating females by the presence of follicles

Ovary Location

- The location of ovaries is variable
- Often seen in the ovarian fossa (Waldeyer’s Fossa), especially in nulliparous females
- Waldeyer’s Fossa bounded by the obliterated umbilical artery anteriorly, the ureter and internal iliac artery posteriorly and the external iliac vein superiorly

Ovary

Ovarian Volumes

“Bigger than we think”

Ovarian volumes

- Menstruating females:
 mean volume 9.8 cc, range 2.5 - 21.9 cc
- Premenarchal:
 mean volume 3.0 cc, range .2 - 9.1 cc
- Postmenopausal:
 mean volume 5.8 cc, range 1.2 - 14.9 cc

Ovarian volumes

9 year old premenarchal

Menstruating females

Developing follicles in different stages of maturity help to identify the ovaries

Ovarian Volumes

Postmenopausal Females

- Once late postmenopause is reached (greater than 5 years since final menstrual period), folliculogenesis ceases, the ovary atrophies and the follicles disappear, with the ovary decreasing in size
- May be difficult to visualize sonographically

Ovarian volumes

Postmenopausal Females

- Smaller and more homogeneous
- Follicles no longer demonstrated in late postmenopause

Fallopian Tubes

- Musculomembranous structures measuring approximately 12 cm in length
- Not a routine part of a normal examination, but can often demonstrate at least a portion of each tube in the majority of patients
Fallopian Tubes

- intramural, (1) isthmic (2) and ampullary (3) portions

Fallopian Tubes

- Identified by its tubular structure (arrow) which can be followed to the uterine cornua (C)

Cul-de-sac

- Physiologic fluid in cul-de-sac seen in menstruating females (<15 ml)

Sonographic Changes in the Appearance of the Female Pelvis with Respect to the Menstrual Cycle and with Age

Cyclic Hormonal changes

- Follicular phase- Enlargement of ovarian follicles with usually one dominant, preovulatory follicle (20 mm average diameter) prior to ovulation
Cyclic Changes of the Ovaries

- Developing follicles in the early follicular phase

- One or two dominant follicles usually seen after day 10

- Ovulatory follicle usually 18-25 mm average diameter (ave 20 mm)

- Ovulatory follicle containing a cumulus oophorus
 - Separation of the granulosal layer of the follicular wall from the thecal layer (containing ovum) 24 hours prior to ovulation

Cyclic Changes of the Ovaries

Crenulated thick walled cystic structure

Peripheral vascularity by color Doppler

Luteal phase- LH surge triggering ovulation with ruptured follicle becoming postovulatory corpus luteum

- Crenulated thick walled cystic structure
- Peripheral vascularity by color Doppler

- Post-ovulatory corpus luteum
Cyclic Changes of the Ovaries

- Pre-menstrual corpus luteum fills in with echoes no longer appearing cystic

Cyclic Changes of the Ovaries

- Monitoring size and number of follicles for evaluation of ovulation in:
 - Normal cycles
 - Ovulation induction cycles
 - IVF cycles
- Mature follicle (18-25mm)

FOLLICLE EVALUATIONS

Cyclic Changes of the Endometrium

- Menstrual phase
- Proliferative phase
- Secretory phase

Variations in thickness and architecture*

Cyclic Changes of the Endometrium

- Menstrual phase: Thin slightly irregular echogenic surface due to sloughing of the functional layer of the endometrium

Cyclic Changes of the Endometrium

- Proliferative phase: Thickens with an echogenic border but hypoechoic inner layer reflecting increase in length of glands (4-10 mm)

Cyclic Changes of the Endometrium

- Secretory phase: Increase in echogenicity reflecting tortuosity and distention of glands with mucin (7-14 mm)
Perimenopause

- Unopposed estrogen stimulation: Increase in echogenicity with thickening that can be greater than 14 mm
- Cannot differentiate from hyperplasia

Early Postmenopause

- Within 5 years of last menstrual period
- Occasional follicular development with subsequent ovulation
- Resulting in cyclic changes of the endometrium and menstruation

Postmenopausal Simple Cysts

- Simple cysts (thin walled, anechoic) often seen in postmenopausal ovaries
- Follicles, paraovarian or paratubal, ovarian surface epithelial inclusion cysts, cystadenomas
- Simple cysts <1 cm considered almost certainly benign and clinically unimportant

Postmenopausal Simple Cysts

Other Techniques for Imaging the Female Pelvis

- 2D imaging limited by constraints of the vaginal probe
- Volume imaging allows routine visualization of the coronal plane
Uterine 3-D Reconstructions in the Coronal Plane

- A 3D volume is obtained through the uterus using an automated or manual sweep in the sagittal plane
- Reconstructed in the coronal plane
- May include a surface rendered image-Thicker slice using shading and lighting effects

Uterine 3-D Reconstructions in the Coronal Plane

- Reconstructed 3D volume in the coronal plane of a normal uterus and endometrium with surface rendering

Uterine 3-D Reconstructions in the Coronal Plane

- Demonstration of findings not appreciated on traditional views
- Uterine anomalies

Uterine 3-D Reconstructions in the Coronal Plane

- Entire IUD most accurately demonstrated in the coronal plane

Saline/Sonohysterography

- Instillation of saline within the endometrial cavity through a balloon catheter
- Allows for evaluation of associated endometrial and myometrial processes
Saline/Sonohysterography

- Fluid distending the endometrial cavity

Contrast Agents

- Microbubble contrast material can be used to enhance the microvascular circulation
- Although little support, a few studies suggest usefulness in differentiation of benign versus malignant ovarian masses

Contrast Agents

- Pre and post-contrast images of a normal ovary
- Enhancement of veins surrounding the ovary without significant enhancement within the ovary

Images courtesy of Andrej Lyschik, Dept. of Radiology, Vanderbilt University Medical Center

Contrast Agents

- Pre and post-contrast images of ovarian carcinoma
- Marked enhancement of ovarian neoplasia

Images courtesy of Andrej Lyschik, Dept. of Radiology, Vanderbilt University Medical Center

Contrast Agents

- Comparison of contrast enhancement of normal ovary and carcinoma

Images courtesy of Andrej Lyschik, Dept. of Radiology, Vanderbilt University Medical Center
Contrast Agents

- Contrast enhancement of the normal myometrium

Images courtesy of Andrej Lysich, Dept. of Radiology, Vanderbilt University Medical Center

Other Imaging Modalities

MRI and CT

Computed Tomography (CT)

- Sonography is initial exam of choice for evaluation of the pelvis
- Computed tomography is used frequently in patients suspected of GI or GU abnormalities

Computed Tomography (CT)

- Transverse image of pelvis with contrast

Computed Tomography (CT)

- Reconstruction in the sagittal plane

Pelvic MRI

- MRI can be a problem solving technique in the pelvis when US is not definitive
- Pelvic anatomy can be better defined with MRI than CT
Pelvic MRI

- Sag T2 weighted image
- High intensity endometrium and myometrium

Pelvic MRI

- Transverse T2 weighted image
- Low intensity junctional zone (JZ) separating endometrium and myometrium

Pelvic MRI

- Sag and transverse T2 weighted images of the right ovary

Conclusions

- Using transabdominal, transvaginal and color Doppler sonography, the architecture of female pelvic organs is well demonstrated.
- One should be familiar with the normal pelvic findings including the cyclic changes of the uterus and ovaries in order to differentiate these from true abnormalities.
- Newer sonographic techniques as well as other radiologic modalities also play a role in pelvic evaluation

Key References