Prenatal Diagnosis of Skeletal Dysplasias

Luis F. Goncalves, M.D.
Division of Pediatric Radiology
Co-Director, Division of Fetal Imaging
Beaumont Health System
Professor of Radiology and Obstetrics and Gynecology
Oakland University William Beaumont School of Medicine
Royal Oak, MI

Disclosures
Luis F. Goncalves, M.D.
Relevant Financial Relationships:
Honoraria from Philips Health Care – Philips Doppler course

Learning Objectives
After completing this presentation, the learner will be able to:
1. List the most common phenotypic features of skeletal dysplasias that can be diagnosed prenatally
2. Develop an approach to the differential diagnosis of the most common skeletal dysplasias
3. Understand the capabilities and limitations of ultrasound to determine if a skeletal dysplasia is lethal

Introduction
Skeletal Dysplasias
- Heterogenous group of rare disorders
- Affect bone and cartilage
- Abnormal bone size, mineralization and shape
- Incidence:
 - General population: 1/10,000 births
 - Prenatal series: 7.5/10,000 births
 - Consanguineous unions: 9.5/10,000 births

Lecture Outline
- Findings that raise suspicion for a skeletal dysplasia
- The fetus with a short femur
- Is the skeletal dysplasia lethal?
- Most frequent skeletal dysplasias
- Differential diagnosis
Prenatal Dx - Clinical Scenarios

Previously affected child or family member

Phenotype known

Targeted US

Genetic testing

Incidental finding during ultrasonographic study

Phenotype unknown

Comprehensive US

3DUS and/or 3DCT

Ddx ± genetic testing

Findings that Raise Suspicion for Skeletal Dysplasias

- Long bone shortening
- Bowing
- Poor mineralization and fractures
- Rib shortening and thoracic hypoplasia
- Malformations of the spine and pelvic bones
- Premature / delayed closure of sutures & fontanelles

3DUS / 3DCT

- Better characterization of:
 - Enlargement of sutures and fontanelles
 - Craniosynostosis
 - Spine and ribs abnormalities
 - Pelvic abnormalities
 - Metaphyseal changes
 - Abnormalities of hands and toes

Fetal MRI

- Role not firmly established in skeletal dysplasias
- May change with 3T:
 - Better delineation of bones vs. 1.5T
 - Cartilaginous epiphyses well seen

Multidisciplinary Team

- Imaging specialist
- Geneticist
- Pediatrician
- Orthopedic surgeon
- Psychologist
- Pathologist
- Other specialists as needed (neurologist, neurosurgeon, cardiologist)

Postnatal Examination

- ESSENTIAL
- Postnatal radiographs
- Autopsy, including bone histology
- Karyotype
- Molecular diagnosis
 - Confirm the phenotypic diagnosis
 - DNA extracted and preserved if diagnosis not currently possible
The Fetus with a Short Femur

Definitions

- Most investigators define a short femur length as < 5th percentile for GA
- High risk of significant skeletal dysplasia:
 - > 4 SD below mean for GA
 - 5 mm below -2 SD for the mean for GA

Kurtz et al. Radiology 1990;177:197-200
Papageorghiou et al. UOG 2008;31:507-11

Short femur length

Detailed ultrasonographic examination

Additional anomalies

- 34% (22% - 47%)
- Chromosomal anomalies: 24% - 40%
- Skeletal dysplasias: 24% - 35%
- Multiple anomalies no unifying dx: 24% - 35%
- Single gene disorders: 4.9%

Isolated shortening

66% (53% - 78%)

- No identifiable cause: 38% - 61%
- False + diagnosis: 13% - 20%
- IUGR: 39% - 43%
- Abnormal Uterine a. Doppler: 90%

Papageorghiou et al. UOG 2008;31:507-11
Vermeer et al. Prenat Diagn 2013;33:365-370
Todd’s et al. BJOG 2004;111:83-86

Lethality

- Best predictor: accurate diagnosis!
- Common pathway = small chest ➔ lung hypoplasia
 - Chest biometry:
 - chest circumference, chest circumference/abdominal circumference, thoracic length, right lung diameter, lung volumetry (3DUS or MRI)
- FL/AC ratio

Romero et al. Prenatal Diagnosis of Congenital anomalies, 1985
No Single Parameter is 100% Sensitive and 100% Specific

Prediction of lung hypoplasia

- **FL / AC < 0.16**

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Lethal</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rahemtullah et al./1997</td>
<td>18</td>
<td>9</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Ramus et al./1998</td>
<td>30</td>
<td>12</td>
<td>100%</td>
<td>94.4%</td>
<td>92.9%</td>
<td>100%</td>
</tr>
<tr>
<td>Goncalves et al./2006</td>
<td>41</td>
<td>14</td>
<td>85.7%</td>
<td>85.2%</td>
<td>75.0%</td>
<td>92.0%</td>
</tr>
<tr>
<td>Nelson et al./2014</td>
<td>38</td>
<td>11</td>
<td>90.9%</td>
<td>88.9%</td>
<td>76.9%</td>
<td>96.0%</td>
</tr>
<tr>
<td>Waver et al./2014</td>
<td>23</td>
<td>12</td>
<td>83.3%</td>
<td>63.6%</td>
<td>71.4%</td>
<td>77.8%</td>
</tr>
</tbody>
</table>

- **CC / AC < 0.60**

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Lethal</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goncalves et al./2006</td>
<td>41</td>
<td>14</td>
<td>85.7%</td>
<td>85.2%</td>
<td>75.0%</td>
<td>92.0%</td>
</tr>
<tr>
<td>Barros et al./2016</td>
<td>24</td>
<td>18</td>
<td>66.0%</td>
<td>75.0%</td>
<td>92.0%</td>
<td>33.0%</td>
</tr>
</tbody>
</table>

- **(Right) lung diameter**

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Lethal</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merz et al./1999</td>
<td>7</td>
<td>7</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Goncalves et al./2006</td>
<td>41</td>
<td>14</td>
<td>85.7%</td>
<td>85.2%</td>
<td>75.0%</td>
<td>92.0%</td>
</tr>
</tbody>
</table>

- **Lung volumes by 3DUS**

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Lethal</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goncalves et al./2006</td>
<td>41</td>
<td>14</td>
<td>85.7%</td>
<td>85.2%</td>
<td>75.0%</td>
<td>92.0%</td>
</tr>
<tr>
<td>Barros et al./2016</td>
<td>24</td>
<td>18</td>
<td>66.0%</td>
<td>75.0%</td>
<td>92.0%</td>
<td>33.0%</td>
</tr>
</tbody>
</table>

Skeletal Dysplasias
Skeletal Dysplasias

- Group of complex and heterogeneous disorders that affect bone development and growth, resulting in alterations of bone size, shape, density and/or integrity
- Prevalence: 1.1 to 2.4/10,000 births

Differential Diagnosis
436 skeletal disorders

Most Frequent Skeletal Dysplasias Diagnosed Prenatally

- Thanatophoric dysplasia
- Osteogenesis imperfecta type 2
- Achondrogenesis type 2 (40-60% of the cases)
- Campomelic dysplasia
- Short-rib dysplasias (with or without polydactyly)

FGFR3 Group

- Thanatophoric dysplasia
- SADDAN
- Achondroplasia
- Hypochondroplasia
- Camptodactyly, tall stature and hearing loss syndrome
- Hypochondroplasia-like dysplasias

Molecular defect known for 364 (previously 215)
Thanatophoric Dysplasia

- Most common lethal skeletal dysplasia
- Only a few cases of survival and only for a few months
- Autosomal dominant
- DNA mutation:
 - fibroblast growth factor receptor 3 (FGFR3)
- Types 1 and 2

Torso and Face 3D

Lower Extremities

Face
Thanatophoric Dysplasia Phenotypic Features

- Severe micromelic limb shortening
- Relatively large cranium
- Depressed nasal bridge
- Hypoplastic thorax
- Platspondyly
- Polyhydramnios
- Short and stubby fingers

Thanatophoric Dysplasia Type 1

- Most common
- Short bowed femora - “telephone receiver”
- Macrocephaly but NOT cloverleaf skull
- Common FGFR3 mutations (60 to 80%)
 - S248C
 - Y373C

Thanatophoric Dysplasia Type 2

- Cloverleaf skull
- Craniosynostosis involving multiple sutures
- Short and straight long bones
- FGFR3 mutation: K650E
 - Almost exclusively in thanatophoric dysplasia type 2

Temporal Lobe Dysplasia

- Highly specific for thanatophoric dysplasia
- Also seen in hypochondroplasia
- One report in achondroplasia
Thanatophoric Dysplasia Differential Diagnosis

- Homozygous achondroplasia
- Skeletal dysplasia SADDAN type
- Platsyspondylic dysplasia Torrance type
- Other skeletal dysplasias with severe bone shortening:
 - Osteogenesis imperfecta
 - Fibrochondrogenesis
 - Atelosteogenesis
 - Ciliopathies with major skeletal involvement

Lethal Platyspondylic Skeletal Dysplasia, Torrance Type

- Phenotype similar to TD type I
- Tibia and fibula have characteristic (reverse) bowing
- Acanthosis nigricans
- Severe neurological delay
- Survival beyond infancy without life support
- FGFR3 mutation K650M

Fibrochondrogenesis

- Flat vertebral bodies (platyspondyly)
- Pear shaped vertebral bodies (rounded anteriorly and narrow posteriorly)
Fibrochondrogenesis

- Rhizomelic micromelia
- Dumbbell-shaped metaphyses
- Peripheral spurs
- Long and thin clavicles
- Short, distally cupped ribs
- Iliac bones are small rounded and broad

Fibrochondrogenesis

- Sagittal midline vertebral clefts
- Less ossified vertebral bodies in the cervical spine

Fibrochondrogenesis

- Very rare
- Caused by COL11A1 and COL11A2 mutations
- Autosomal recessive
- Diagnosis: radiographic features and histopathology
- Perinatally lethal
- Few survivors reported with orthopedic handicaps, bilateral hearing loss and global developmental delay

Atelosteogenesis Types 1 and 3

- Autosomal dominant
- Sporadic
- Caused by mutations in the filamin beta gene
- Severe limb shortening, bowing
- Thoracic hypoplasia
- Hypertelorism, flat nasal bridge, micrognathia
- Dislocated hips, knees, elbows, clubfeet

Atelosteogenesis Type 1 and 3

- Type 1 is lethal, more severe than type 3
- Absent of various long bones are common, specially fibula
- Hypoplastic humeri that tapers distally
- Hypoplastic femora
- Platyspondyly with coronal clefts
- Incomplete ossification of thoracic vertebrae
- Brachydactyly
Atelosteogenesis Type 2

- Caused by mutations in the DTST gene
 - Same gene that causes diastrophic dysplasia and achondrogenesis type IB
 - Hitchhiker thumbs
 - Autosomal recessive

Ciliopathies with Major Skeletal Involvement

- New nomenclature for short-rib dysplasias (with or without polydactyly group)
 - Includes:
 - Chondroectodermal dysplasia (Ellis-van-Creveld)
 - Asphyxiating thoracic dysplasia
 - Short-rib polydactyly syndromes:
 - Types I/3 (Saldino-Noonan/Verma-Naumoff)
 - Type 2
 - Type 4
 - Type 5
 - Orofaciodigital syndrome
 - Cranioectodermal dysplasia

Absence of Polydactyly Does Not Exclude the Diagnosis

- Constant:
 - SRPS type 2
- Common:
 - SRPS types 1/3
- Rare:
 - SRPS type 4
Considerable Phenotypic Overlap

<table>
<thead>
<tr>
<th>Limb Shortening</th>
<th>SPRS 1/3</th>
<th>SPRS 2</th>
<th>SPRS 4</th>
<th>SPRS 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: marked micromelia, “flipper-like”, pointed metaphyses</td>
<td>Marked mesomelic micromelia, Ovoid tibiae shorter than fibulae, Premature ossification of proximal epiphyses</td>
<td>Marked micromelia, Tibiae longer than fibulae, Birds ulnae and radii</td>
<td>Marked mesomelic micromelia, Femur and lower limb bowing, Absent ossification of radii ulnae tibiae and fibulae</td>
<td></td>
</tr>
<tr>
<td>2: moderate micromelia, spumed metaphyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapulae</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Spine</td>
<td>Coronal clefts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clavicle</td>
<td>Sup. located</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetabula</td>
<td>Trident</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SRPS - Molecular Basis

- Types 1 and 3: DYNC2H1, IF80, WDR60
- Type 2: DYNC2H1, NEK1
- Type 4: not yet elucidated
- Type 5: WDR35

Asphyxiating Thoracic Dysplasia (Jeune Syndrome)

- Autosomal recessive
- Genetically heterogeneous (several mutations)
- Three main phenotypic characteristics:
 - Narrow, bell-shaped thorax
 - Short, broad, horizontal ribs
 - Short bones
 - Mesomelic, mild bowing, metaphyseal spurs
 - “Trident” acetabular roof

Additional Phenotypic Features

- Proximal femoral epiphysal center may be ossified at birth (2/3 of the cases)
- Clavicles: lateral clavicular hook, a.k.a. “bycicle handle-bar”
- Brachydactyly
- Postaxial polydactyly in 10% of the cases (as opposed to 100% in chondroectodermal dysplasia)
Additional Phenotypic Features

• Directly related to prognosis:
 • Dysplastic kidneys
 • renal failure in childhood
 • may require transplant
 • Joubert syndrome

Prognosis

• Severe thoracic narrowing:
 • Lung hypoplasia, respiratory failure, early death
• Mild thoracic narrowing:
 • Long term survival possible
 • Severity of renal and hepatobiliary involvement
 • Presence of CNS anomalies (Joubert)

Chondroectodermal Dysplasia (Ellis van-Creveld Syndrome)

• Autosomal recessive, ECV1 and ECV2 genes
• 1/60,000 births
• Except Amish of Lancaster County, Pennsylvania
• Classic tetrad:
 • Chondrodysplasia
 • Ectodermal dysplasia
 • Postaxial polydactyly
 • Congenital heart disease
• Mesomelic or acromesomelic limb shortening
• Polydactyly (usually w/ formed metacarpal and phalanges)
• Hands 100% / Feet 10%
• CHD (60%)
• AV canal 88%, high frequency of single atrium
• Trident acetabulum
• Normal skull and spine
• Narrow thorax with short horizontal ribs
Ellis van-Creveld Syndrome

Baujat and Le Merrer. Orphanet J Rare Dis 2007;2:27

Prognosis

- Can range from death in the neonatal period due to cardiopulmonary disease to long-term survival
- Average adult height is 110 - 160 cm
- Normal cognitive development

Goncalves

Osteogenesis Imperfecta

- Group of heterogeneous disorders usually caused by mutations in type 1 pro collagen
- 5 types
 - Overall prevalence: 6-7/100,000
 - OI type 2 is the perinatal lethal form
 - Prevalence: 2/100,000
 - Autosomal recessive and dominant forms

Osteogenesis Imperfecta Type 2 Phenotype

- Almost no ossification of the skull
- Micromelic dwarfism
- Multiple fractures, including ribs (beaded)
- Short thorax, not necessarily narrow
- Neonatal death due to pulmonary hypoplasia
- Spine is not demineralized

Goncalves
Osteogenesis Imperfecta Type 2

Perinatology Research Branch, NICHD, NIH/DHHS
Other Forms of OI

• Type 1
 • Autosomal dominant
 • No prenatal deformities
 • After birth:
 • Bone fragility (fractures), blue sclera
 • Hearing loss (50%)
 • Normal or near normal final stature

• Type 3
 • Autosomal dominant and recessive forms
 • Rare, nonlethal
 • High morbidity and long term mortality
 • Multiple fractures that can be detected at birth
 • Unossified skull, wormian bones, blue sclera
 • Mildly shortened bones / marked angulations
 • May overlap with less severe cases of type 2

Osteogenesis Imperfecta Type 3

• Second most important for prenatal diagnosis
• Less severe than type II
• May manifest at birth
• Bowed long bones, almost normal length
• Neonatal fractures with trivial handling of the newborn
• Rib fractures may lead to death in the first weeks or months
• High morbidity and long term mortality
• Majority of affected individuals require ambulation assistance and/or wheelchair

Other Forms of OI

• Type 4
 • Autosomal dominant and recessive forms
 • Mildest form
 • Normal long bones and sclera
 • Mild to moderate osseous fragility
 • Femoral bowing may be present at birth
 • 25% of the newborns may present with fractures

Other Forms of OI

• Type 5
 • Autosomal dominant and recessive forms
 • Moderate to severe bone fragility
 • Calcified interosseous membrane of the forearm
 • Predisposition to develop hyperplastic calluses

Differential Diagnosis (OI)

• Skeletal dysplasias with micromelic limb shortening or bowing or demineralization
 • Thanatophoric dwarfism
 • Hypophosphatasia
 • Cleidocranial dysplasia
 • Achondrogenesis
 • Campomelic dysplasia
Ddx
Case 1
Hypophosphatasia

- Rare, autosomal recessive
- Low alkaline phosphatase in tissues
 - Bone demineralization
- 6 subtypes: perinatal (lethal), prenatal benign, infantile, childhood, adult, and odontophosphatasia

Perinatal Lethal Hypophosphatasia

- Markedly demineralized skull (caput membranaceum)
 - Ddx: OI type 2 and achondrogenesis type 1A
- Spine:
 - Absent ossification vertebral bodies:
 - Thoracic, sharp demarcation w/ ossified vertebrae
 - Posterior elements may be more unossified
- Ribs:
 - Short, thin, unossified ends

Perinatal Lethal Hypophosphatasia

- Cupped metaphyses (as in rickets)
- Prominent central lucency from metaphysis to diaphysis
- Skin covered osteochondral spurs forearms or legs (characteristic)

Perinatal Lethal Hypophosphatasia

- Thoracic spine demineralization
- Sharp demarcation between ossified vs. unossified vertebral bodies
- Thin ribs
- Patchy demineralization spine and ribs ("gum eraser" effect)
- Caput membranaceum
- Central y-shaped metaphysical lucency

Ddx Case 2
Cleidocranial Dysplasia

- 1/200,000 births
- Autosomal dominant, mutations in RUNX2
- Absent, hypoplastic, pseudoarthrosis of clavicles
- Wide sutures and fontanels
- Wormian bones
- Lack of ossification of pubic rami
- Not lethal / survivors with normal intellect
Most Frequent Skeletal Dysplasias Diagnosed Prenatally

- Thanatophoric dysplasia
- Osteogenesis imperfecta type 2
- Achondrogenesis type 2
- Campomelic dysplasia
- Short-rib dysplasias (with or without polydactyly)

Achondrogenesis

- Most severe limb shortening
- Uniformly lethal
- When to suspect:
 - Severe micromelia
 - Macrocephaly with varying degrees of skull mineralization
 - Demineralization of the spine

Achondrogenesis Types

- Type 1A - Houston-Harris
 - Severe spondyloepiphyseal dysplasia group
 - Autosomal recessive
 - TRIP11 mutation
- Type 1B - Fraccaro
 - Autosomal recessive
 - SLC26A2 mutation (diastrophic dysplasia sulfate transporter gene)
- Type 2 and hypochondrogenesis - Langer-Saudino
 - Autosomal dominant
 - COL21 mutation

Achondrogenesis 1A

- Unossified calvarium (caput membranaceum)
- Severe micromelia, feet may be externally rotated
- Unossified vertebral bodies and sacrum
 - Cervical and thoracic pedicles may be ossified
 - Small ilia, crescentic and concave inferiorly
- Poorly ossified pubis and ischia
- Short ribs with fractures and beaded appearance, cupped ends
- Flat nasal bridge, micrognathia, cystic hygroma

The phenotype range of achondrogenesis 1A

Achondrogenesis 1B

- Sulphation disorders group
- Other disorders in this group include:
 - diastrophic dysplasia
 - atelosteogenesis type 2
- Autosomal recessive
- Caused by mutations in the DTDST gene
- Also known as Parenti-Fraccaro
- Remember hitchhiker thumbs

- Ossified skull
- Extremely short bones (shorter than type 1A) / clubfeet
- Unossified vertebral bodies and sacrum
- Widened interpedicular distances cervical and lumbar (“cobra head” appearance)
- Small ilia, crescentic and concave inferiorly
- Unossified pubis and ischia
- Hitchhiker thumb
- Cystic hygroma

Achondrogenesis Type 2

- Severe micromelia
- Lack of mineralization of vertebral bodies, sacrum and ischium
- Short, horizontal ribs with no fractures
- Cranum
 - larger than expected for gestational age
 - Relatively normal mineralization
- Other findings:
 - Cystic hygroma, cleft palate, fetal hydrops, polyhydramnios

- Both are lethal autosomal dominant disorders
- Mutations in COL2A1 gene
- Regarded as a continuum within same spectrum

Achondrogenesis Type 2

- Severe micromelia
- Lack of mineralization of vertebral bodies, sacrum and ischium
- Short, horizontal ribs with no fractures
- Cranum
 - larger than expected for gestational age
 - Relatively normal mineralization
- Other findings:
 - Cystic hygroma, cleft palate, fetal hydrops, polyhydramnios

- Both are lethal autosomal dominant disorders
- Mutations in COL2A1 gene
- Regarded as a continuum within same spectrum

Achondrogenesis Type 2

- Severe micromelia
- Lack of mineralization of vertebral bodies, sacrum and ischium
- Short, horizontal ribs with no fractures
- Cranum
 - larger than expected for gestational age
 - Relatively normal mineralization
- Other findings:
 - Cystic hygroma, cleft palate, fetal hydrops, polyhydramnios

- Both are lethal autosomal dominant disorders
- Mutations in COL2A1 gene
- Regarded as a continuum within same spectrum
Prenatal Ultrasound
20 3/7 weeks
Achondrogenesis
Differential Diagnosis

• Disorders with severe limb shortening and bone demineralization:
 • Osteogenesis imperfecta type II
 • Hypophosphatasia
 • Schneckenbecken dysplasia
 • Grebe syndrome
• If hitchhiker thumb present
 • Diastrophic dysplasia
 • Atelosteogenesis type 2

Most Frequent Skeletal Dysplasias Diagnosed Prenatally

• Thanatophoric dysplasia
• Osteogenesis imperfecta type 2
• Achondrogenesis type 2
• Campomelic dysplasia
• Short-rib dysplasias (with or without polydactyly)

Campomelic Dysplasia

• Rare
• Autosomal dominant
• Almost always lethal
• Caused by SRY-box 9 or SOX-9 gene mutation
 • this gene also controls testicular differentiation in vertebrates

Sex Reversal Syndrome

• 75% of the fetuses with a male karyotype
• Female or ambiguous genitalia
• Due to SOX-9 gene mutation
 • fundamental for testicular differentiation in vertebrates

Campomelic Dysplasia
Limbs

• Femur
 • Symmetric shortening and bowing
 • Approximately 5.5 SD below mean for GA
 • Mild anterolateral angulation proximal third
• Tibia:
 • Anterolateral angulation distal third
 • Hypoplastic fibula
 • Clubfeet
• Normal vs. mild shortening of upper extremity bones
 • No bowing
Campomelic Dysplasia

Thorax
- Hypoplastic scapulae
- Narrow, “bell-shaped”
- 11 rib pairs (frequent)
- Majority (but not all) affected fetuses die in the neonatal period from pulmonary hypoplasia

Scapula in the Differential Diagnosis of Skeletal Dysplasias
- A - Luton type of PLSD
- B - San Diego type of PLSD
- C - Torrance type of PLSD
- D - Campomelic dysplasia
- E - Kyphomelic dysplasia
- F - Antley-Bixler syndrome
- G - SRP type II (Majewski)
- H - SRP type III (Verma-Naumoff)

Campomelic Dysplasia

Spine and Pelvis
- Cervical:
 - Hypoplastic, poorly mineralized cervical vertebrae
- Thoracic:
 - Demineralized pedicles
- Pelvis:
 - Hip dysplasia
Campomelic Dysplasia
Other Phenotypic Findings

- Macrocephaly / hydrocephaly
- Hypertelorism
- Hypoplastic face / cleft palate / micrognathia
- Hydronephrosis
- Cardiac anomalies

Bowed Femur
Differential Diagnosis

Less Frequent but Still Among the 10 Most Common

- Achondroplasia
- Chondroectodermal dysplasia (Ellis-van-Creveld)
- Asphyxiating thoracic dysplasia
- Chondrodysplasia punctata
- Diastrophic dysplasia
Proximal Femoral Metaphysical-Diaphyseal Angle

- Normal fetuses:
 - 22 weeks: $98.5^\circ \pm 6.8^\circ$
 - 32 weeks: $105.6^\circ \pm 7.3^\circ$
 - Boulet et al. Prenat Diagn 2009;29:697-702
- Achondroplasia
 - $> 130^\circ$ (5 of 6 fetuses)
 - Khalil et al. UOG 2014;44:69-75
Achondroplasia
Characteristic Findings

• Decreased interpedicular distance in the lumbar spine
• Trident Acetabulum
• “Champagne glass” configuration of the pelvis

Achondroplasia
Other Findings

• Large cranium
• Frontal bossing
• Depressed nasal bridge
• Facial hypoplasia
• Trident hand

Achondroplasia
Heterozygous Form

• Normal mental and sexual development
• Life expectancy similar to normal adult
• Long term morbidity:
 • Narrow craniocervical junction
 • Brain stem compression
 • Lumbar spine stenosis
 • Obesity
Achondroplasia

Homozygous Form

- Uniformly lethal
- Phenotype similar to thanatophoric dysplasia
- Both parents with achondroplasia
 - 25% chance of normal child
 - 50% chance of heterozygous achondroplasia
 - 25% chance of homozygous achondroplasia

Hypochondroplasia

- Similar but milder radiographic findings than achondroplasia
- Differentiation based on clinical and radiologic criteria
- Autosomal dominant, but not always caused by FGFR3 mutation
- Narrow interpedicular distance of the lumbar spine
- However, trident hand is typical of achondroplasia

Less Frequent but Still Among the 10 Most Common

- Achondroplasia
- Chondroectodermal dysplasia (Ellis-van-Creveld)
- Asphyxiating thoracic dysplasia
- Chondrodysplasia punctata
- Diastrophic dysplasia

Chondrodysplasia Punctata

- Defining finding = stippling
 - aberrant calcium deposition in cartilage during endochondral bone formation
- Genetically heterogeneous disorders with additional common features:
 - maxillofacial hypoplasia - flat mid face and nose
 - limb shortening (various degrees and patterns)

CDP Group

<table>
<thead>
<tr>
<th>Condition</th>
<th>Inheritance</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDPX2 (Conrad-Hünermann)</td>
<td>X-linked dominant</td>
<td>EBFP</td>
</tr>
<tr>
<td>CDPX1 (Brachytelephalangic type)</td>
<td>X-linked recessive</td>
<td>ARSE</td>
</tr>
<tr>
<td>CHILD</td>
<td>X-linked dominant</td>
<td>NSDHL</td>
</tr>
<tr>
<td>Keutel syndrome</td>
<td>Autosomal recessive</td>
<td>MGP</td>
</tr>
<tr>
<td>Greenberg dysplasia</td>
<td>Autosomal recessive</td>
<td>LBR</td>
</tr>
<tr>
<td>Rhizomelic CDP type 1</td>
<td>Autosomal recessive</td>
<td>PEX7</td>
</tr>
<tr>
<td>Rhizomelic CDP type 2</td>
<td>Autosomal recessive</td>
<td>DHPAT</td>
</tr>
<tr>
<td>Rhizomelic CDP type 3</td>
<td>Autosomal recessive</td>
<td>AGPS</td>
</tr>
<tr>
<td>CDP tibial-metacarpal type</td>
<td>Autosomal dominant</td>
<td>Unknown</td>
</tr>
<tr>
<td>Astley-Kendall dysplasia</td>
<td>Autosomal recessive</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

CHILD: Congenital Hemidysplasia, Ichthyosis, Limb Defects
Rhizomelic CDPs (1, 2, 3)

- Autosomal recessive
- Rhizomelic shortening
 - Humerus more affected than femur
 - Stippling
 - Proximal humerus more than distal
 - Great femoral trochanters
 - Patellas
 - Ischiium, pubis, sacral alae
 - Tarsus, carpus
 - Sternum and laryngeal cartilages
 - Metaphyseal splaying and irregularities (attention knee)
 - Brachymetacarpalia, 4th more frequently involved
 - Hypoplastic distal phalanges
 - Spine: coronal vertebral body clefts
 - Other: microcephaly / Cataracts

CDPX1 (Brachytelephlangic)

- X-linked recessive - affects males
- No limb asymmetry
- Hypoplastic distal phalanges
- Short proximal phalanges, metacarpals and metatarsals
- Stippling:
 - Tarsal bones
 - Long bones, vertebrae, hips, chostochondral junctions, hyoid bone, tracheal cartilage
- Spine: mild platyspondyly, coronal and sagittal vertebral body clefts
CDPX2 Conradi-Hünermann

- X-linked dominant
 - Mainly affects females / lethal in males
- Asymmetric rhizomelia, sometimes bowing
- Scoliosis
- Flexion contractures (hips, knees), clubfoot
- Stippling: generalized
- Other: polyhydramnios, Dandy-Walker spectrum, cataracts, skin abnormalities

Prognosis

- Most severe forms lethal
 - Neonatal period or by the age of 2 years
 - Respiratory complications leading cause of death
- Milder phenotypes may have better prognosis

Differential Diagnosis

- Warfarin embryopathy – phenocopy of CDPX1
 - Look for cerebral/internal organ hemorrhages
- Multiple other conditions:
 - Trisomies 18 and 21
 - Hydantoin and alcohol exposure
 - Maternal SLE, hyperemesis, Sjögren
 - Neonatal hypothyroidism
 - Multiple sulphatase deficiency
 - Zellweger syndrome
 - SLO
 - Mucolipidosis type 2
 - GM1 gangliosidosis
 - Cornelia de Lange syndrome

Goncalves

Less Frequent but Still Among the 10 Most Common

- Achondroplasia
- Chondroectodermal dysplasia (Ellis-van-Creveld)
- Asphyxiating thoracic dysplasia
- Chondrodysplasia punctata
- Diastrophic dysplasia

Goncalves

Diastrophic Dysplasia

- Autosomal recessive
- Caused by mutations in the diastrophic dysplasia sulfate transporter gene (DTDTS)
- Highly prevalent in Finland, carrier frequency 1-2%
- Not uniformly lethal
- Classified under the sulphation disorders group, which also includes achondrogenesis type 1B and atelosteogenesis type 2:
 - Hitchhiker thumb

Goncalves

Diastrophic Dysplasia Phenotype

- Rhizomelic micromelia
- Scoliosis
- Multiple joint contractures and subluxations
- Ulnar deviation of fingers
- Abducted thumb (“Hitchhiker thumb”)
- Multiple joint contractures and subluxations
- Occasional cleft palate, micrognathia and cardiac anomalies

Goncalves
Diastrophic Dysplasia

Conclusions

• Prenatal diagnosis of skeletal dysplasias is extremely challenging
 • Demands diligence and meticulous imaging
 • Multidisciplinary approach and postnatal confirmation are key

Conclusions

• Most common lethal skeletal dysplasias:
 • Thanatophoric dysplasias
 • Osteogenesis imperfecta type 2
 • Achondrogenesis (types 1A, 1B, and 1C)

Conclusions

• Differential diagnosis for demineralized skull:
 • Osteogenesis imperfecta type 2
 • Achondrogenesis type 1A
 • Types 1B and 1C have no demineralized skull
 • All have demineralized vertebral bodies
 • Type 1B is caused by DTST mutation and has a hitchhiking thumb
 • Hypophosphatasia
 • Cleidocranial dysplasia
 • Sutures are wide
 • Clavicles: absent, hypoplastic or pseudoarthrosis

Conclusions

• Campomelic dysplasia:
 • Bowing anterior third of femur
 • Bowing of tibia
 • Upper extremities relatively unaffected
 • Hypoplastic scapulae
 • Sex reversal in 75%
 • Male karyotype / female or ambiguous genitalia
Conclusions

- Midface hypoplasia + stippling
 - Think chondrodysplasia punctata
 - Various forms
 - Think warfarin embryopathy

- Skeletal dysplasias with hitchhiker thumb:
 - Diastrophic dysplasia
 - Achondrogenesis type 1B
 - Atelosteogenesis type 2

Lethality

- No single parameter is 100% sensitive or specific
- Best predictor = accurate diagnosis
- Commonly used parameters:
 - FL / AC < 0.16
 - CC / AC < 0.60
 - Lung volumes by 3DUS
 - Lung diameter measurement (right lung)

Key References

Goncalves

Thank you