Fetal Chest

Christopher Cassady MD Edward B. Singleton Department of Pediatric Radiology Texas Children's Hospital and Fetal Center

Disclosures

Christopher Cassady MD

Relevant Financial Relationships: NONE

Learning Objectives

After completing this presentation, the learner will be able to:

1. Understand the pathologies seen by ultrasound in the fetal chest;

2. Be able to recognize the basic differences among pathologies;

3. Offer a reasonable differential diagnosis for a fetal chest lesion; and

4. Have an understanding of the natural history for follow up.

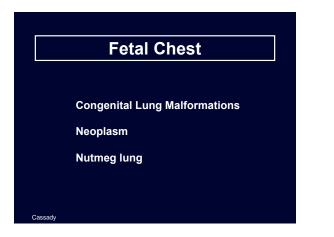
Introduction

1. Lung

Cassady

Cassady

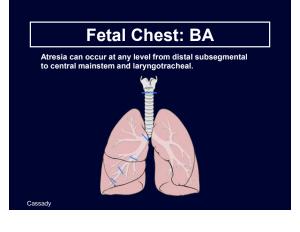
- 2. Pleural space
- 3. Mediastinum
- 4. Chest Wall

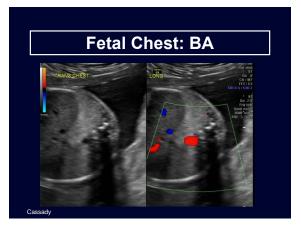


Cassady

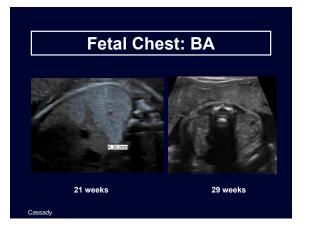
Congenital Lung Malformations

- Bronchial Atresia
- Sequestration
- CCAM
- Bronchogenic cyst


Cassady


Fetal Chest: BA

Congenital Lung Malformations


Bronchial Atresia
 key features: _____m

res: mass effect homogeneity pulmonary flow less conspicuous with time

Fetal Chest: BA

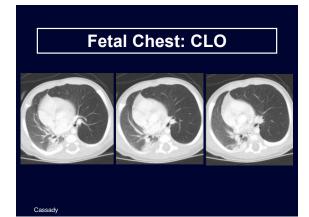
Congenital Lung Malformations

central lesions stay large

- Lobar Bronchial Atresia
- Congenital Lobar Overinflation
- CHAOS

Cassady

Fetal Chest: CLO

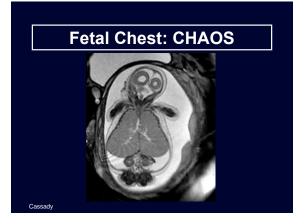

Congenital Lung Malformations

central lesions stay large

- Lobar Bronchial Atresia
- Congenital Lobar Overinflation
- CHAOS

Cassady

Fetal Chest: CHAOS


Congenital Lung Malformations

central lesions stay large

- Lobar Bronchial Atresia
- Congenital Lobar Overinflation
- CHAOS bilateral huge lungs, ascites 'unilateral CHAOS' = mainstem atresia

Cassady

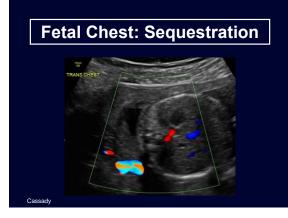
Fetal Chest: Sequestration

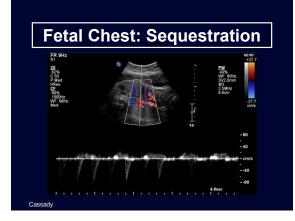
Congenital Lung Malformations

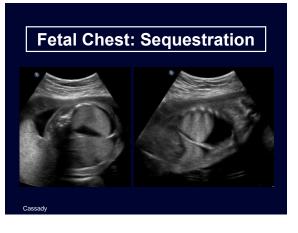
· Sequestration key features:

Cassady

mass effect homogeneity systemic flow less conspicuous with time


4

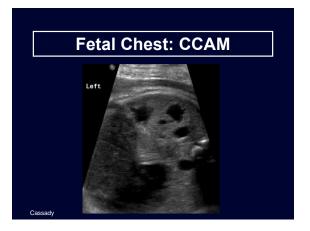

Fetal Chest: Sequestration

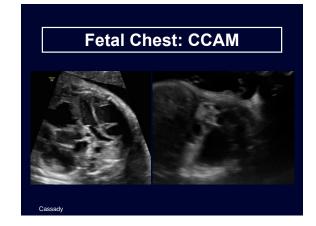

Congenital Lung Malformations

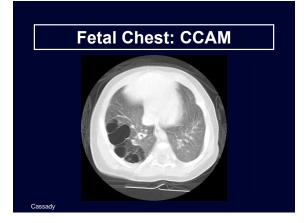
- Sequestration
 - 2 varieties: Intralobar venous return to heart Extralobar systemic venous return

Cassady

Fetal Chest: CCAM


Congenital Lung Malformations


 CCAM (CPAM) key features:

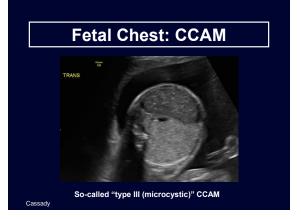

Cassady

mass effect inhomogeneity cysts stabilize after 26 weeks

divided into small or large (>2 cm) cyst types

Fetal Chest: CCAM

Congenital Lung Malformations


 CCAM (CPAM) key features:

mass effect inhomogeneity solid?

Stocker type III "CPAM": controversial. Many now believe this is a central atresia because the pathology is identical to CHAOS. Large lesion that looks like a lobar atresia on imaging.

Cassady

Cassady

Fetal Chest: BC

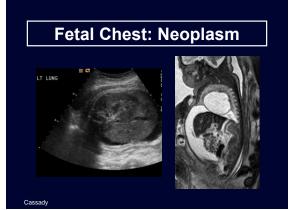
Congenital Lung Malformations

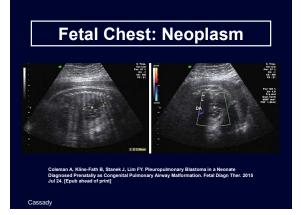
- Bronchogenic cyst key features: sing
 - single cyst, often central +/- distal obstruction no change in size over time

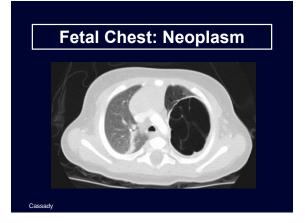
Fetal Chest: Neoplasm

Lung Neoplasms

Cassady


- Pleuropulmonary blastoma
 Fetal Lung Interstitial Tumor
 Congenital Peribronchial Myofibroblastic Tumor


Fetal Chest: Neoplasm

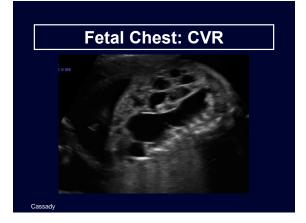

Lung Neoplasms

- Pleuropulmonary blastoma
- cystic solid
- Fetal Lung Interstitial Tumor solid
 Congenital Peribronchial Myofibroblastic Tumor solid

key feature: growth after 26-28 weeks

Fetal Chest: CVR

Why does any of this make a difference?


CVR "CCAM Volume Ratio" = CLM volume ratio

length x width x height x 0.52 head circumference

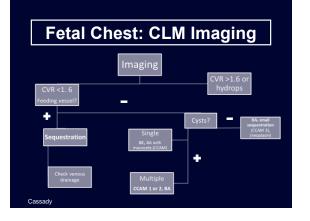
>1.6

Crombleholme TM et al. Cystic ade prenatally diagnosed cystic adeno J Pediatr Surg 2002;37(3):331-338. enomatoid malformation volume ratio predicts outco omatoid malformation of the lung. ne in

Cas ady

Fetal Chest: CLM Imaging

IMAGING ALGORITHM


- Characterize lesion on US "CVR" (CLMMass Volume Ratio) Primarily solid or primarily cystic (solitary, or multiple?) Systemic or pulmonary artery, vein Hydrops (get echocardiogram for cardiac function)

MRI/echocardiogram

Antenatal imaging follow up closely until 28 weeks (growth plateau); 34 weeks: √ mediastinal shift, confirm dx

Postnatal Chest CT

Beydon N et al. Comparison between US and MRI in the prenatal assessment of lung malformations. Pediatr Radiol 2013;43:685-696 Cassady

Fetal Chest: CLM Treatment

Treatment

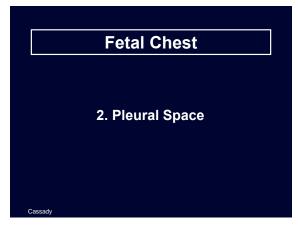
Prenatal: cardiac dysfunction

steroids (CVR >1.6) shunt dominant cyst fetal surgery

Postnatally, they are almost all excised eventually (except subsegmental BA)

Fetal Chest: Nutmeg Lung

ous, symmetric ns

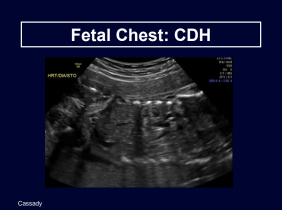

Nutmeg Lung

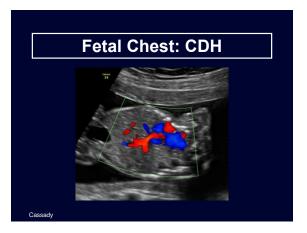
key features:	enlarged, heterogeneous, symmetric
	typically small effusions
	Classically from HLHS
	if no structural cardiac abnormality,
	suspect primary lymphangiectasia

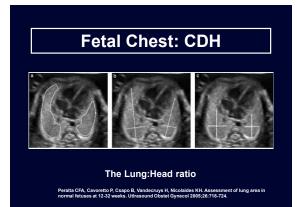
Cassady

Fetal Chest

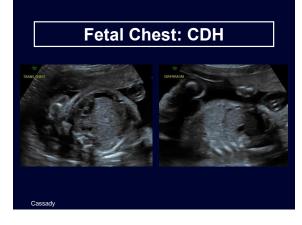
Pleural Space


Cassady


- Intrapleural CDH
- Isolated pleural effusion

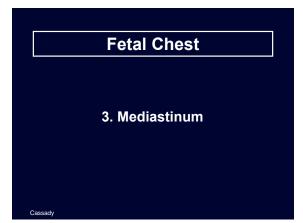

Fetal Chest: CDH

Congenital Diaphragmatic Hernia


Key features: heart displaced (mass effect) heterogeneity to chest on side of hernia +/- stomach in chest (if left iCDH) ?liver up? if stomach not to front ribs, yes if right iCDH, yes use color Doppler to help measure LHR

<section-header><section-header>

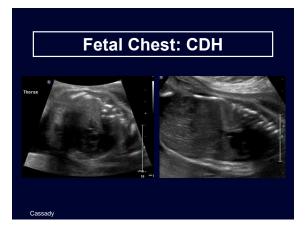
Fetal Chest: Effusion

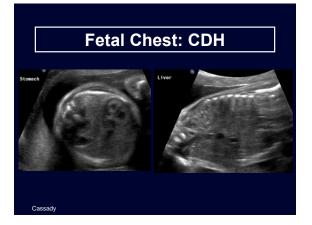

Pleural effusion

Key features: simple fluid surrounds lung

exclude chromosomal/structural cause (including cardiac, trisomies) then ddx = chylous, infection, hydrops

Cassady

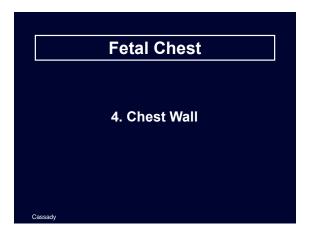

Fetal Chest


Mediastinum

Cassady

- Mediastinal CDH
- Teratoma
- (Neural tumor)
- (Vascular malformation)

Key features: Lung volumes good anterior: displaces heart back middle: stomach up on right, but not liver


Fetal Chest: Teratoma

Teratoma

Key features:

heterogenous mass cystic and solid calcifications vascular on Doppler

Fetal Chest

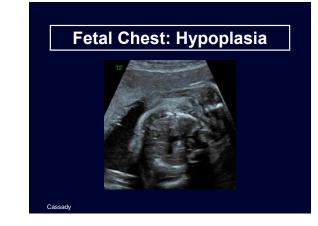
Chest Wall

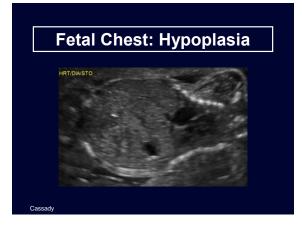
- Thoracic Hypoplasia
- Lymphatic malformation
- Hamartoma

Fetal Chest: Hypoplasia

Thoracic hypoplasia

Cas


Oligo/anhydramnios Rib constriction: skeletal dysplasia Lung hypoplasia: masses (CDH, cardiac); increased abdominal pressure; abnormal diaphragm function (eg. giant omphalocele)


Cassady



Fetal Chest: LM

Lymphatic malformation

Key features: multicystic infiltrating mass typically from neck or axilla

Fetal Chest: Hamartoma Mesenchymal hamartoma Key features: heterogeneous calcification of margins deforms local ribs benign. very rare.

Fetal Chest: MRI

Consider MRI:

Cassady

Cassady

- 1. if intervention is possible
- 2. when the fetal airway may be compromised
- to assess pulmonary hypoplasia
 when there are still unanswered questions
- important for safe delivery planning

Conclusions

LUNG:	congenital lung malformations rarely neoplasm, lymphangiectasia
PLEURAL SPACE:	congenital diaphragmatic hernia effusion
MEDIASTINUM:	diaphragmatic hernia rarely neoplasm
HEART:	structural CHD neoplasm, effusion
CHEST WALL:	anhydramnios, skeletal dysplasia lymphangioma, hamartoma

Cassady

Key References

Langston C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg 2003 Feb;12(1):17-37.

Crombleholme TM et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg 2002;37(3):331-338.

Beydon N et al. Comparison between US and MRI in the prenatal assessment of lung malformations. Pediatr Radiol 2013;43:685-696

Peralta CFA, Cavoretto P, Csapo B, Vandecruys H, Nicolaides KH. Assessment of lung area in normal fetuses at 12-32 weeks. Utlrasound Obstet Gynecol 2005;26:718-724.

Chu L, Seed M, Howse E, Ryan G, Grosse-Wortmann L. Mesenchymal hamartoma: prenatal diagnosis by MRI. Pediatr Radiol. 2011 Jun;41(6):781-4.