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Elastography, what are the problems?

• Cause modal patterns in continuous wave applications
backwards traveling waves in transient wave experiments. 

• Result biased estimates of shear wave speed (SWS) 

conventional methods assume shear  wave 
propagation parallel to the lateral direction 

Data from LogiqE9 system 

• Presence of reflected waves from organ boundaries and internal 
inhomogeneities






Elastography, what are the problems?
• Presence of reflected waves from organ boundaries and internal 

inhomogeneities
• Solutions: Directional filters Particle axial 

velocity movie
Filtered data 

movie

Data from LogiqE9 system Song et al. (2015)



Elastography, what are the limitations?

Penetration
• Liver -> Obesity, ascites

• Prostate -> 3-4cm. In large prostate, not 
deep enough to measure anterior zone

• Thyroid -> about 5.5cm. Large and deeply 
nodules cannot be properly assessed.

Shear wave propagation
• Breast -> Accuracy differs, problems with 

propagation of vibration energy. Weak in hard 
lesions

Pure gelatin based phantom:
Good shear wave penetration and 
propagation

Data from Samsung RS85 system WFUMB guidelines and recommendations articles

Gelatin + 6% castor oil: 
Problems with shear wave 
penetration and propagation



Motivation

• Reflections
• Multiple waves

• Penetration with good 
shear waves signals

Are they good or bad for shear 
wave measurements?

How can we achieve it?



Reverberant Shear Wave Elastography

• Shear waves of random amplitude and 
phase propagates in all directions as a 
statistically isotropic distribution across 
4π steradians (Parker et al., 2017. 
Ormachea et al., 2018.) 

• Practically speaking, all tissue boundaries with reflections, 
and sources in the vicinity of the observation point 
contribute to the overall distribution. 

(a)

Historical framework from Acoustics
(A.D. Pierce, McGraw-Hill: New York, 1981, p. 257):



Reverberant Shear Wave Elastography

• The monochromatic reverberant field 
pressure �𝑷𝑷 at position 𝜺𝜺 and time t is:

Schematic for the orientation of the 
imaging transducer and the object that 
has an isotropic random distribution of 
shear waves.

Parker et al. (2017)
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where
nq : unit vectors in the direction of propagation of the qth wave
�𝑃𝑃𝑞𝑞: independent, identically distributed variables of random
magnitude and phase.



Reverberant Shear Wave Elastography
Define the 
autocorrelation function 
of the detected shear 
wave velocity 𝜐𝜐𝑥𝑥

Autocorrelation profiles 
respect to:
• Axial direction
• Lateral direction

Wavenumber from 
autocorrelation 
functions

Particle displacement signal






Reverberant Shear Wave Elastography

Final shear wave speed

𝒇𝒇𝒗𝒗: Vibration frequency
𝒌𝒌:   Wavenumber

Final wavenumber

𝒌𝒌 =
�𝒌𝒌𝒙𝒙

𝟐𝟐
+ �𝒌𝒌𝒛𝒛
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Particle displacement signal






Experiments

• A Verasonics ultrasound system & 
linear ultrasound transducer L7-4, 
center frequency was 5 MHz

• Phantom materials:
– CIRS breast phantom
– CIRS viscoelastic phantom

• Vibration frequencies: 
– [60 to 450] Hz, CIRS breast phantom
– [60 to 220] Hz, CIRS viscoelastic ph.

CIRS breast phantom CIRS viscoelastic ph.

Elastic modulus 20 kPa Elastic modulus 6 kPa



Results: CIRS breast phantom – Single frequencies
180Hz               220Hz             360Hz             450Hz

Particle displacement signals















Results: CIRS breast phantom – Multi frequencies
140-180-220Hz             300-360-400Hz   400-450-500Hz

Particle displacement signals















Results: CIRS viscoelastic phantom – Single frequencies
100Hz               140Hz             180Hz             220Hz

Particle displacement signals















Results: CIRS viscoelastic phantom – Multi frequencies
60-100-140Hz           100-140-180Hz             140-180-220Hz      

Particle displacement signals















Shear wave speed vs. Frequency
CIRS Breast phantom CIRS viscoelastic phantom

Dispersion (m/s/100Hz) values
Phantom Experiment Dispersion Frequency range

CIRS breast
Single 0.28

180-300 Hz
Multi 0.32

CIRS viscoelastic
Single 0.59

100-220 Hz
Multi freq. 0.56



Comparison with another SWE modality

Difference with respect to STL-SWE at 
220 Hz

Single Multi

CIRS Breast 11.06 % 13.29%

CIRS 
viscoelastic 4.10% 5.94%

STL-SWE = single-tracking location shear wave 
elastography



Results: CIRS breast phantom – Inclusion region

Contrast and Contrast to noise ratio (CNR) 
360 Hz 400 Hz 450 Hz STL-SWE

Contrast 0.12 0.19 0.29 0.91
CNR 1.41 2.78 4.40 8.75

Particle displacement signals












Results: In vivo human liver

• A Verasonics ultrasound system & 
linear ultrasound transducer L7-4, 
center frequency was 5 MHz

• A volunteer patient for in vivo liver 
tissue.

• Vibration frequencies: 
– [40 to 240] Hz

• Scans under the requirements of 
informed consent and the University 
of Rochester Institutional Review 
Board

Patient were laid supine on a 
custom bed and the right arm 
abducted.



Results: In vivo human liver

Particle displacement signals












Results: In vivo human liver

Dispersion (m/s/100Hz) values
Experiment Dispersion Frequency range

In vivo liver Single 0.63 80-240 Hz



Preliminary results multi-frequencies: In vivo liver
100 Hz  - 200 Hz   - 300Hz

Particle displacement signal






Summary

• CIRS breast phantom -> lower 
dispersion than CIRS viscoelastic

• No significant differences between 
single and multi-frequencies. 

• Unlike other modalities, R-SWE 
does not filter or select for SWs 
propagation directions

• Expected since the viscoelastic phantom is a 
more dispersive media.

• Approach is feasible and can more quickly 
assess tissue properties. 

• Facilitates the use for clinical applications.
• Implementation is faster and simpler.



Summary

• The linear slope is comparable with 
results obtained with MRE (i.e. 0.75 
m/s/100Hz at 25 Hz - 63 Hz (Klatt et al., 2007))

• An ideal reverberant field is 
obtained using multiple sources 
around the ROI.

• Tissue boundaries and 
inhomogeneities produce more 
reflection waves 

• However, the frequency ranges are different 
and cannot be strictly compared

• However, reflections from boundaries and in 
homogeneities help to randomize the field in 
practice.

• Condition that is needed to create a reverberant 
field. Determination of shear wave sources is 
left for future research.



Summary

• Practical issue for clinicians 
concerns: time required for 
acquisition and processing of 
images

• A future study will apply R-SWE at 
a deeper region in fatty patients.

• High frame rate ultrasound scanning, high 
complexity shear wave algorithms are already 
implemented. Limiting factor integration 
vibration sources with the ultrasound system 

• Further study will involve the viscoelastic 
property estimation



Conclusion

• It was possible to estimate the viscoelastic properties in phantom 
materials and in vivo human tissue using the R-SWE approach.

• Consistent SWS estimation that enables characterization and 
differentiation of elastic and viscoelastic materials.

• Multifrequency approach shows that it is feasible and can more 
quickly assess the frequency dependence of SWS.
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