

AIUM 2018 ANNUAL CONVENTION New York, NY, March 24-28, 2018

Quantitative Ultrasound Assessment of Neurotoxicity in the Young Rhesus Macaque Brain

Ivan M. Rosado-Mendez,^{1,2} Laura Castañeda,¹ Chrysanthy Ikonomidou,³ James A. Zagzebski,² and Timothy J. Hall²

¹Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, MEX ²Department of Medical Physics, University of Wisconsin, Madison, WI ³Department of Neurology, University of Wisconsin, Madison, WI

The authors certify that they have NO financial interest in the subject matter or materials discussed in this presentation

Equipment loan and technical support from **SIEMENS Healthcare**

This work was supported by

GRANTS R01HD072077, R01HD083001-01A1 WNPRC PILOT AWARD, NIH P51OD011106

SEED FUNDING FROM INSTITUTO DE FISICA UNAM PAPIIT IA104518 AND IN107916

Background

Every year, millions of children are exposed to anesthesia worldwide¹

Image from www.scientificamerican.com

Prolonged and repeated use of general anesthetics in children younger than 3y/o and pregnant women can have neurotoxic effects²

Evidence based on *ex vivo* and *in vivo* studies in animal models³

Neurotoxic effects in humans have not been confirmed due to lack of methods to assess these effects non-invasively in the young brain

> ¹Andropolous and Greene, PMCID: 28177852 ²https://www.fda.gov/downloads/Drugs/DrugSafety/UCM554644.pdf ³McGowan and Davis, PMCID: 18499584

N-Methyl-D Aspartate (NMDA) antagonists and γ-Aminobutyric Acid A (GABA_A) agonists can induce <u>apoptosis</u> of neurons and oligodendrocytes

Activated Caspase 3 (CASP3, an apoptotic enzime) in neonatal Rhesus macaque (*Banbrick et al., PMCID: 22222480*)

Background

Apoptosis (programmed cell death) causes changes in tissue microstructure to which <u>ultrasound is sensitive</u>

Oligodendrocytes stained for myelin basic protein after exposure of fetal Rhesus macaque to isoflurane (*Creeley et al., PMCID: 24158051*)

Background

Ultrasound signals are sensitive to how tissue microstructure changes during apoptosis

This information can be obtained through the spectral (frequency-based) analysis of echo signals, i.e., **Quantitative Ultrasound (QUS)**⁴

QUS has been used *in vitro, ex vivo,* and *in vivo* to assess apoptosis and other types of cell death in various cancer types and tissues^{5,6}

⁴Czarnota, Kolios, et al. PMCID: 10507779
⁵Vlad et al., PMCID: 21057928
⁶Tadayyon et al. PMCID:28710751

Cell death evaluated through histology and QUS in breast tumor xenografts in mice (*Sadeghi et al., PMID: 23761215*)

LONG TERM GOAL

Investigate the use of Quantitative Ultrasound to detect the induction of apoptosis by anesthetics in the newborn brain

Current objectives:

- Perform a preliminary assessment of the sensitivity of Quantitative Ultrasound (QUS) to apoptosis induced by sevoflurane (GABA_A agonist) in a non-human primate model of the newborn brain
- 2. Identify challenges inherent to the application of QUS techniques in the *in vivo* newborn brain

Methods

- 14 2-7 day-old Rhesus macaques from the Wisconsin National Primate Research Center
- Five-hour long exposure to sevoflurane (GABA_A agonist)
- Ultrasound data acquisition at Ohrs and 6hrs after start of exposure
- Tissue harvested at 8hrs for activated caspase 3 immunohistochemistry

SIEMENS Acuson S3000 Phased array transducer @ 10MHz

10-15 frames of "raw" radiofrequency (RF) signals from thalamus using Axius Direct User Research interfase⁷

QUANTITATIVE ULTRASOUND

DIFFUSE SCATTERING ANALYSIS

- Biomarkers for apoptosis -

10-15 frames of "raw" radiofrequency (RF) signals from thalamus using Axius Direct User Research interfase⁷

Insana & Hall, PMCID: 2299033

QUANTITATIVE ULTRASOUND

DIFFUSE SCATTERING ANALYSIS

- Biomarkers for apoptosis -

Effective Scatterer Size	Acoustic Concentration	
(ESS)	(AC)	

(Insana & Hall, PMCID: 2299033)

REJECTION CRITERIA

Spectral signal/noise < 15 dB, Disagreement between results from left and right thalamus

DATA ANALYSIS

6hrs. vs. 0hrs Parameter Change (P= ESS or AC) $\Delta P(\%) = \frac{P(6hrs) - P(0hrs)}{P(0hrs)} \times 100\%$

10-15 frames of "raw" radiofrequency (RF) signals from thalamus using Axius Direct User Research interfase⁷

QUANTITATIVE ULTRASOUND

DIFFUSE SCATTERING ANALYSIS

- Biomarkers for apoptosis -

Effective Scatterer Size	Acoustic Concentration	
(ESS)	(AC)	

(Insana & Hall, PMCID: 2299033)

REJECTION CRITERIA

Spectral signal/noise < 15 dB, Disagreement between results from left and right thalamus

DATA ANALYSIS

6hrs. vs. Ohrs Parameter Change (P= ESS or AC) $\Delta P(\%) = \frac{P(6hrs) - P(0hrs)}{P(0hrs)} \times 100\%$

COHERENT SCATTERING ANALYSIS

- Validity of diffuse scattering assumption -

Detection of different scattering conditions (Rosado-Mendez et al. PMCID: 27046872)

Data rejection:

- Low Spectral signal/noise: 5 cases
- Disagreement left vs. right sides: ESS: 3 cases, AC: 2 cases
- Remaining for analysis
 ESS: 6 cases, AC: 7 cases

6hrs vs. 0hrs parameter change			
	ESS	AC	
Mean	-5.4%	-2.6%	
Range	-21.1% to 8.4%	-14.9% to 14.1%	
Wilcoxon p	0.05	0.36	
Significant reduction in:	5/6 subjects (83%)	4/7 subjects (57%)	

Data rejection:

- Low Spectral signal/noise: 5 cases
- Disagreement left vs. right sides: ESS: 3 cases, AC: 2 cases
- Remaining for analysis
 ESS: 6 cases, AC: 7 cases

6hrs vs. 0hrs parameter change			
	ESS	AC	
Mean	-5.4%	-2.6%	
Range	-21.1% to 8.4%	-14.9% to 14.1%	
Wilcoxon p	0.05	0.36	
Significant reduction in:	5/6 subjects (83%)	4/7 subjects (57%)	

Results

Coherent scattering leads to <u>data paucity</u> and <u>increased variance</u>^{8,9}

Average fraction of each subject's 10-15 frames that show a particular scattering condition

⁸Rubert et al., PMCID 24726800 ⁹Luchies et al. PMCID: 22622974

*Agreement between QUS results from left and right thalamus

- The <u>Effective Scatterer Size</u>, a Quantitative Ultrasound parameter based on assuming <u>diffuse scattering</u>, shows promise as a biomarker for apoptosis induced by exposure to sevoflurane in the *in vivo* young Rhesus macaque brain
- The presence of <u>coherent scattering</u> conditions severely constrained our data. Current work is focusing on overcoming these limitations through data compounding and other strategies (Liu et al. PMCID: 7521044, Herd et al. PMCID: 22033132, Luchies et al. PMCID: 22622974)

Acknowledgments

The authors thank:

Dr. Kevin Noguchi (Washington University at St. Louis) for activated CASP3 analysis of harvested tissue

Kristin Crosno and staff at the Wisconsin National Primate Research Center for coordinating experiments

Dr. Quinton Guerrero (University of Wisconsin) for help in ultrasound data acquisition

Contact information

Ivan M. Rosado-Mendez, PhD Research associate, Instituto de Física Universidad Nacional Autónoma de México

irosado@fisica.unam.mx

