MAYO CLINIC Ultra-se Imaging Initial E

Ultra-sensitive Microvessel Imaging for Breast Tumors: Initial Experiences

Ping Gong¹, Chengwu Huang¹, Pengfei Song¹, Wenwu Ling², Robert T. Fazzio¹, Kathryn J. Ruddy³, Karthik Ghosh⁴, Duane D. Meixner¹, and Shigao Chen¹

- 1. Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- 2. Department of Ultrasound, West China Hospital of Sichuan University, Sichuan, China
- 3. Department of Oncology, Mayo Clinic, Rochester, MN, United States
- 4. Department of General Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States

Principle of Ultra-sensitive Microvessel Imaging

High frame rate = High ensemble count = High Doppler sensitivity

Ultrafast plane wave imaging frames (500-4000 ensembles/second)

Advanced Tissue Clutter Filtering [1-4]

- 1. P. Song, A. Manduca, J. D. Trzasko and S. Chen, "Ultrasound Small Vessel Imaging With Block-Wise Adaptive Local Clutter Filtering," in *IEEE Transactions on Medical Imaging*, vol. 36, no. 1, pp. 251-262, Jan. 2017.
- 2. P. Song *et al.*, "Accelerated Singular Value-Based Ultrasound Blood Flow Clutter Filtering With Randomized Singular Value Decomposition and Randomized Spatial Downsampling," in *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 64, no. 4, pp. 706-716, April 2017.
- 3. P. Song, A. Manduca, J. D. Trzasko and S. Chen, "Noise Equalization for Ultrafast Plane Wave Microvessel Imaging," in *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 64, no. 11, pp. 1776-1781, Nov. 2017.
- 4. P. Song *et al.*, "Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking," in *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 65, no. 2, pp. 149-167, Feb. 2018

Conventional Color Doppler VS Ultra-sensitive Microvessel Imaging

©2016 MFMER | slide-3

20

0

x (mm)

0

x (mm)

5

10

15

-5

-10

-15

BI-RADS Scores for Benign and Malignant Tumors Based on B-mode and Conventional Doppler Images

Histopathology of masses (n=29)	
Benign	10
Fibroadenoma	6
Fibrocystic breast changes	4
Malignant	17
Invasive ductal carcinoma	13
Ductal carcinoma in situ	1
Invasive lobular carcinoma	4
Invasive mammary carcinoma	1

Microvessel Distribution Patterns for Different Mass Types

Fibroadenoma

Fibrocystic breast changes

Carcinoma

Quantify Ultra-Sensitive Microvessel Images with Commonly Used Parameters

Number of Vessels

- > Avascular-Hypovascular
- > Hypervascular

vessel density = $\frac{\text{vessel pixels}}{\text{overall tumor pixels}}$

- Distribution of Tumor Microvessels
 - Central
 - > Peripheral
 - > Both

Use microvessel morphology to upgrade/downgrade mass BI-RADS scores

Microvessel morphologies of different masses

Regrading BI-RADS based on Microvessel Fibroadenoma Morphology > Continuous vessel flow along the mass Agree well with benign tumors -2 boundary Partially agree with benign tumors -1 Fibrocystic breast changes Avascular at center No obvious benign or malignant 0 > Hypovascular at periphery: dot or linear features Partially agree with malignant +1Carcinoma tumors Disordered, irregular branching, Agree well with malignant tumors +2 penetrating, chaotic morphology

Ultra-sensitive Microvessel Imaging Allows More Accurate BI-RADS

Unnecessary Biopsy reduced by 4 cases

Potentially useful for *early* evaluation of medical therapy response

Questions & Discussion

©2016 MFMER | slide-10