Ultra-sensitive Microvessel Imaging for Breast Tumors: Initial Experiences

Ping Gong¹, Chengwu Huang¹, Pengfei Song¹, Wenwu Ling², Robert T. Fazzio¹, Kathryn J. Ruddy³, Karthik Ghosh⁴, Duane D. Meixner¹, and Shigao Chen¹

1. Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
2. Department of Ultrasound, West China Hospital of Sichuan University, Sichuan, China
3. Department of Oncology, Mayo Clinic, Rochester, MN, United States
4. Department of General Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
Principle of Ultra-sensitive Microvessel Imaging

High frame rate = High ensemble count = High Doppler sensitivity

Ultrafast plane wave imaging frames (500-4000 ensembles/second)

Advanced Tissue Clutter Filtering [1-4]

4. P. Song et al., "Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking," in *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 65, no. 2, pp. 149-167, Feb. 2018
Conventional Color Doppler VS Ultra-sensitive Microvessel Imaging

Fibroadenoma

Invasive Lobular Carcinoma, grade II
Histopathology of masses (n=29)

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>10</td>
</tr>
<tr>
<td>Fibroadenoma</td>
<td>6</td>
</tr>
<tr>
<td>Fibrocystic breast changes</td>
<td>4</td>
</tr>
<tr>
<td>Malignant</td>
<td>17</td>
</tr>
<tr>
<td>Invasive ductal carcinoma</td>
<td>13</td>
</tr>
<tr>
<td>Ductal carcinoma in situ</td>
<td>1</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>4</td>
</tr>
<tr>
<td>Invasive mammary carcinoma</td>
<td>1</td>
</tr>
</tbody>
</table>
Microvessel Distribution Patterns for Different Mass Types

Fibroadenoma

Fibrocystic breast changes

Carcinoma

Grade I

Grade II

Grade II
Quantify Ultra-Sensitive Microvessel Images with Commonly Used Parameters

- **Number of Vessels**
 - Avascular-Hypovascular
 - Hypervascular

 \[
 \text{vessel density} = \frac{\text{vessel pixels}}{\text{overall tumor pixels}}
 \]

- **Distribution of Tumor Microvessels**
 - Central
 - Peripheral
 - Both

Overall Vessel Density %

Vessel Density Ratio (Periphery/Center)
Use microvessel morphology to upgrade/downgrade mass BI-RADS scores

Microvessel morphologies of different masses

- **Fibroadenoma**
 - Continuous vessel flow along the mass boundary

- **Fibrocystic breast changes**
 - Avascular at center
 - Hypovascular at periphery: dot or linear

- **Carcinoma**
 - Disordered, irregular branching, penetrating, chaotic morphology

Regrading BI-RADS based on Microvessel Morphology

<table>
<thead>
<tr>
<th>Agreement with Benign or Malignant Tumors</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree well with benign tumors</td>
<td>-2</td>
</tr>
<tr>
<td>Partially agree with benign tumors</td>
<td>-1</td>
</tr>
<tr>
<td>No obvious benign or malignant features</td>
<td>0</td>
</tr>
<tr>
<td>Partially agree with malignant tumors</td>
<td>+1</td>
</tr>
<tr>
<td>Agree well with malignant tumors</td>
<td>+2</td>
</tr>
</tbody>
</table>
Ultra-sensitive Microvessel Imaging Allows More Accurate BI-RADS

After regrading

Unnecessary Biopsy reduced by 4 cases
Potentially useful for *early* evaluation of medical therapy response

Baseline

After 1st chemo
Adriamycin
Cytoxan

B-mode Color Doppler Ultra-sensitive Microvessel Imaging
Questions & Discussion