# Strain Rate Imaging for Visualization of Mechanical Contraction

MV Andersen<sup>1</sup> (mvan@hst.aau.dk), S Schmidt<sup>1</sup>, P Søgaard<sup>2</sup>, J Struijk<sup>1</sup>, B Atwater<sup>3</sup>, D Friedman<sup>3</sup>, K Arges<sup>3</sup>, M LeFevre<sup>3</sup>, C Moore<sup>4</sup>, J Kisslo<sup>3</sup>, O von Ramm<sup>4</sup>

<sup>1</sup>Aalborg University, <sup>2</sup>Aalborg University Hospital,

<sup>3</sup>Duke University Hospital, <sup>4</sup>Duke University





AAU

#### Background

- Sampling is a non linear process that creates new information not present in the real world. However, if the images is sampled adaquately the effect of aliasing can be mitigated.
- Kanai et al. were the first to describe the propagation of tissue motion in the heart during contraction using high frame rate ultrasound imaging.
- The study of propagating changes associated with electrical depolarization will require high temporal resolution comparable to electrocardiogaphy sampling rate (above 500Hz).
- Here we present strain rate images and their application for visualizing tissue shortening propagation in in left ventricle.





AALBORG UNIVERSITY DENMARK





#### Methods

- B-mode images were acquired using Duke University's phased array ultrasound system, T5 (Duke University, Durham, NC, USA).
- Images had an 80° field of view and angular sampled with respect to the theoretical diffractionlimited azimuth resolution. To acquire images at a high frame rates we use exploso scan with 32:1, 16:1 or 8:1 parallel receive operations for every transmit in order to sample images at 1 ms to 4 ms intervals.
- Due to the way strain and strain rate curves are normally visualized, it can be exceedingly difficult to detect propagating waves along the myocardial contour.







## Strain Rate Image



In the strain rate image, the horizontal direction is time, and vertical direction is relative location along the myocardial contour.

- It is easier for the human eye to find patterns in an image.
- Therefore we can use a large number of strain rate  $\triangleright$ curves (100+ curves), where horizontal image axis is time and vertical is the location along the myocardial contour.







# **₽**

#### Strain Rate Image

Two consecutive heart beats show that the patterns observed in strain rate images are consistent from beat to beat in the same patient.





AALBORG UNIVERSITY Denmark

#### Results

- When focussing on the interventricular septum only, we see that there is a propagating wave of the tissue shortening onset.
- This tissue shortening onset propagation along the myocardial contour can be visualized using high frame rate strain rate images.
- The superimposed red line indicates tissue shortening onset along the interventricular septum. This line was defined by visual inspection of strain rate images.







AALBORG UNIVERSITY

#### Results









AALBORG UNIVERSITY

In a cohort of 22 patients with no diagnosed abnormalities, 5 different propagating patterns were identified, where the most common type was a propagation from somewhere inside the middle of the interventricular septum.

| Туре                           | 1    | II              | III             | IV              | V               |
|--------------------------------|------|-----------------|-----------------|-----------------|-----------------|
| #                              | 2    | 9               | 6               | 3               | 2               |
| V1 [ <i>ms</i> <sup>-1</sup> ] | V>20 | $1.29 \pm 0.87$ | $0.71 \pm 0.16$ | $1.86 \pm 0.42$ | $1.06 \pm 0.24$ |
| V2 [ <i>ms</i> <sup>-1</sup> ] |      | 1.38 ± 0.39     | 1.74 ± 1.23     |                 |                 |

## Patterns



IVS contraction propagation velocity in a normal cohort





AALBORG UNIVERSITY

← V1 – V1

#### Summary

- With high frame rate ultrasound we are able to identify the origin of mechanical shortening of the ventricle.
- High frame rate imaging combined with the strain rate images allow for the observation of propagation patterns of shortening onset.
- Though multiple patterns arise in normal patients, the contractile pattern is consistent from beat to beat in each patient.



